首页 / 浏览问题 / 桌面GIS / 问题详情
模型训练报错
28EXP 2024年08月06日
08/06 13:33:10 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
08/06 13:33:10 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) RuntimeInfoHook                    
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
before_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(NORMAL      ) DistSamplerSeedHook                
 -------------------- 
before_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) IterTimerHook                      
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_val_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_val_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_val_iter:
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_val_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
after_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_test_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_test_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_test_iter:
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_test_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
after_run:
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
Traceback (most recent call last):
  File "<input>", line 1, in <module>
  File "F:\supermap\resources\python-helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile
    pydev_imports.execfile(filename, global_vars, local_vars)  # execute the script
  File "F:\supermap\resources\python-helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
    exec(compile(contents+"\n", file, 'exec'), glob, loc)
  File "C:\Users\admin\AppData\Local\Temp\model_train_4.py", line 11, in <module>
    ImageryTrainer(train_data_path=r"F:\yaogantestdata\self-running-training\Tank training\tank\training_data_all",config=r"F:\supermap\resources_ml\trainer_config\object_detection\object_det_mmdet_cascade_rcnn.sdt",epoch=int(30),batch_size=int(16),lr=None,output_model_path=r"F:\yaogantestdata\self-running-training\Tank training\tank",output_model_name=r"saved_model_0806tank_30_16",backbone_name=r"r-50",backbone_weight_path=r"F:\supermap\resources_ml\backbone\resnet50-19c8e357.pth",log_path=r"F:\yaogantestdata\self-running-training\log file\0806tank",reload_model=False,pretrained_model_path=None,gpus=[0]).object_detect_train()
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_trainer.py", line 83, in object_detect_train
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_trainer_collector\object_detection_train.py", line 33, in train
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_trainer_collector\object_detection_train.py", line 37, in mmdet_pytorch
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_models\base_framework\_mmdet\common_train_mmdet.py", line 594, in train
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_models\base_framework\_mmdet\common_train_mmdet.py", line 558, in main_train
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\runner\runner.py", line 1703, in train
    self._train_loop = self.build_train_loop(
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\runner\runner.py", line 1495, in build_train_loop
    loop = LOOPS.build(
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\registry\registry.py", line 570, in build
    return self.build_func(cfg, *args, **kwargs, registry=self)
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\registry\build_functions.py", line 121, in build_from_cfg
    obj = obj_cls(**args)  # type: ignore
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\runner\loops.py", line 44, in __init__
    super().__init__(runner, dataloader)
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\runner\base_loop.py", line 26, in __init__
    self.dataloader = runner.build_dataloader(
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\runner\runner.py", line 1353, in build_dataloader
    dataset = DATASETS.build(dataset_cfg)
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\registry\registry.py", line 570, in build
    return self.build_func(cfg, *args, **kwargs, registry=self)
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\registry\build_functions.py", line 121, in build_from_cfg
    obj = obj_cls(**args)  # type: ignore
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_models\base_framework\_mmdet\data\od.py", line 22, in __init__
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\dataset\base_dataset.py", line 245, in __init__
    self.full_init()
  File "F:\supermap\support\MiniConda\conda\lib\site-packages\mmengine\dataset\base_dataset.py", line 296, in full_init
    self.data_list = self.load_data_list()
  File "I:\teamctiy\BuildAgent\work\test_trunk/iobjectspy/ml\vision\_models\base_framework\_mmdet\data\od.py", line 70, in load_data_list
KeyError: '1'

训练数据生成结果文件夹如下

1个回答

您好,您那边在做训练数据生成的时候参数是怎么设置的呢?有设置类别字段吗?还有就是你的数据里面的字段和字段值尽量试用英文,不要使用中文
9,242EXP 2024年08月06日
这边是自己构建的训练数据生成的结果文件

在用软件训练数据生成工具处理其它储油罐影像时字段也是油罐 那张影像用于模型训练工具是成功的 classe改成1后这边也报错了

可以麻烦帮忙看一下有什么其它原因吗 谢谢!
能否把这份数据提供给我呢,我这边看下。我的qq:2889751134
...